Langsung ke konten utama

Cara Uji Anova Dua Jalur Menggunakan SPSS

Analisis varians (analysis of variance) atau ANOVA adalah suatu metode analisis statistika yang termasuk ke dalam cabang statistika inferensi. Uji dalam anova menggunakan uji F karena dipakai untuk pengujian lebih dari 2 sampel. Dalam praktik, analisis varians dapat merupakan uji hipotesis (lebih sering dipakai) maupunpendugaan (estimation, khususnya di bidang genetika terapan).

Anova (Analysis of variances) digunakan untuk melakukan analisis komparasi multivariabel. Teknik analisis komparatif dengan menggunakan tes “t” yakni dengan mencari perbedaan yang signifikan dari dua buah mean hanya efektif bila jumlah variabelnya dua. Untuk mengatasi hal tersebut ada teknik analisis komparatif yang lebih baik yaitu Analysis of variances yang disingkat anova.


Anova digunakan untuk
membandingkan rata-rata populasi bukan ragam populasi. Jenis data yang tepat untuk anova adalah nominal dan ordinal pada variabel bebasnya,jika data pada variabel bebasnya dalam bentuk interval atau ratio maka harus diubah dulu dalam bentuk ordinal atau nominal. Sedangkan variabel terikatnya adalah data interval atau ratio. 

ANOVA dua arah ini digunakan bila sumber keragaman yang terjadi tidak hanya karena satu faktor (perlakuan).Faktor lain yang mungkin menjadi sumber keragaman respon juga harus diperhatikan.Faktor lain ini bisa perlakuan lain atau faktor yang sudah terkondisi. Pertimbangan memasukkan faktor kedua sebagai sumber keragaman ini perlu bila faktor itu dikelompokkan (blok),sehingga keragaman antar kelompok sangat besar,tetapi kecil dalam kelompok sendiri.

Tujuan dan pengujian ANOVA 2 arah ini adalah untuk mengetahui apakah ada pengaruh dari berbagai kriteria yang diuji terhadap hasil yang diinginkan. Misal, seorang manajer teknik menguji apakah ada pengaruh antara jenis pelumas yang dipergunakan pada roda pendorong dengan kecepatan roda pendorong terhadap hasil penganyaman sebuah karung plastik pada mesin circular.  

Adapun asumsi dasar yang harus terpenuhi dalam analisis varian adalah :
  1. Kenormalan. Distribusi data harus normal, agar data berdistribusi normal dapat ditempuh dengan cara memperbanyak jumlah sampel dalam kelompok.
  2. Kesamaaan variansi, Setiap kelompok hendaknya berasaldari popolasi yang sama dengan variansi yang sama pula. Bila banyaknya sampel sama pada setiap kelompok maka kesamaan variansinya dapat diabaikan. Tapi bila banyak sampel pada masing masing kelompok tidak sama maka kesamaan variansi populasi sangat diperlukan.
  3. Pengamatan bebas, Sampel hendaknya diambil secara acak (random), sehingga setiap pengamatan merupakan informasi yang bebas.

Anova lebih akurat digunakan untuk sejumlah sampel yang sama pada setiap kelompoknya, misalnya masing masing variabel setiap kelompok jumlah sampel atau responden nya sama sama 250 orang.

secara umum persamaan pada anova dua jalan dapat digambarkan dengan menggunakan kolom sebagai berikut:
Cara Uji Anova Dua Jalur Menggunakan SPSS

Memasukan data ke SPSS
Hal yang perlu diperhatikan dalam pengisian variabel Name adalah “tidak boleh ada spasi dalam pengisiannya”.
 

Cara Uji Anova Dua Jalur Menggunakan SPSS
Pengolahan data dengan SPSS
Langkah-langkahnya :


  • Pilih Analyze => General Linear Model => Univariate
  • Kemudian lakukan pengisian terhadap :
  • Kolom Dependent Variable
  • Kolom Faktor(s) Masukkan yang termasuk Fixed Factor(s) (dalam kasus ini : tingkat dan gender)  

Cara Uji Anova Dua Jalur Menggunakan SPSS 
Klik Plots
  • Horizontal Axis : … (tingkat)
  • Separate lines : … (gender)  

Displays
  • Descriptive statistics
  • Estimate of effect
  • Homogeneity test
  • Spread vs level plot  

Klik OK
Maka akan keluar output sebagai berikut:


Karena p_value (0,180) > α (0,05) maka H0 diterima.
Jadi tidak ada interaksi antara faktor tingkat dengan faktor gender pada tingkat signifikasi 5%. Hal tersebut manyatakan bahwa uji efek untuk faktor bahan bakar dan kendali bisa dilakukan.

Cara Uji Anova Dua Jalur Menggunakan SPSS

Berdasarkan output diatas, tampak bahwa mahasiswa tingkat 3 memiliki jam belajar paling lama. Dapat juga disimpulkan bahwa tidak terdapat perbedaan jumlah jam belajar yang signifikan antara mahasiswa tingkat 2 dan 4. Sedangkan antara tingkat yang lain menunjukkan adanya perbedaan yang signifikan dalam hal jumlah jam belajar  

Komentar

Postingan populer dari blog ini

Cara Uji Kelayakan Model Goodness of fit Pada SmartPLS

Uji Kelayakan Model Goodness of fit Pada SmartPLS,  Untuk melakukan uji kualitas model pengukuran, caranya adalah:  Klik menu Calculate  => PLS Algoritm (lihat pada bagian yang dilingkari  pada gambar dibawah ini !) Setelah itu, maka akan muncul tampilan seperti gambar di bawah ini.  Selanjutnya, pilih (klik) Start Calculation. Setelah proses Calculation selesai, maka akan keluar hasil pengujian kualitas model pengukuran (lihat gambar di bawah ini !). Penyimpulan mengenai kualitas model pengukuran mengacu pada rule of  tumbs berikut ini: Pada gambar di bawah ini nampak hasil outer loadings (di SPSS diistilahkan  dengan Factor Loadings ) digunakan untuk mengukur validitas konvergen  dari model pengukuran (instrumen). Pada kasus ini, hasil uji outer loadings menunjukkan skor yang rendah pada variabel AKT (Akuntabilitas) yaitu  kurang dari rule of tumbs 0,70 (Chin, 1998). Skor kurang dari 0,70 juga  nampak pada konstruk KMUK4 dan KSI...

Cara Uji Validitas dengan Corrected Item-Total Correlations SPSS

Uji validitas item merupakan uji instrumen data untuk mengetahui seberapa cermat suatu item dalam mengukur apa yang ingin diukur. Item dapat dikatakan valid jika adanya korelasi yang signifikan dengan skor totalnya, hal ini menunjukkan adanya dukungan item tersebut dalam mengungkap suatu yang ingin diungkap. Item biasanya berupa pertanyaan atau pernyataan yang ditujukan kepada responden dengan menggunakan bentuk kuesioner dengan tujuan untuk mengungkap sesuatu. Teknik uji validitas item dengan teknik Corrected ItemTotal Correlation , yaitu dengan cara mengkorelasikan skor item dengan skor totalnya dan melakukan koreksi terhadap nilai koefisien korelasi yang overestimasi. Hal ini dikarenakan agar tidak terjadi koefisien item total yang overestimasi (estimasi nilai yang lebih tinggi dari yang sebenarnya). Pada metode ini tidak perlu memasukkan skor total, karena sudah dihitung secara otomatis.    Cara Uji Validitas Metode Analisis Faktor (KMO) dengan SPSS Kemudian pengujian sign...

Rumus Fungsi If Dengan Conditional Formatting di Excel

Fungsi if merupakan fungsi yang sering digunakan pada aplikasi ms.excel untuk mendapatkan nilai berdasarkan kriteria yang ditentukan. Kadangkala kita ingin menambahkan warna-warna atau simbol-simbol tertentu pada setiap nilai yang dikembalikan dengan fungsi if. Untuk memberikan perbedaan ini, kita dapat menggunakan tools conditional formatting pada fungsi if tersebut. Mencari Nilai Dengan Fungsi If Sebelum menambahkan style pada hasil dari fungsi if, berikut ini adalah sebuah contoh data mencari score dengan fungsi if. Nilai score pada kolom E, merupakan nilai berdasarkan persentase pencapaian yang didapat pada kolom D berdasarkan nilai-nilai pada tabel pertama (A1:B4) Ketentuan score pada kolom E berdasarkan tabel pertama adalah : Jika nilai pada kolom D adalah lebih kecil dari 75%, maka akan mendapat score 1. Jika nilai pada kolom D antar 75% sampai 100%, maka akan mendapat score 2. Dan Jika nilai pada kolom D lebih besar dari 100%, maka akan mendapatkan score 3. If Dan Conditional F...